AIの課題

AI幻覚

In the context of AI, a Hallucination is a confident response generated by a Large Language Model that does not align with its training data or real-world facts. It occurs when the model "invents" information to fill gaps in knowledge, often because authoritative, structured source data was missing or unclear.

AIの課題
Risk Management
Data Quality

Why Hallucinations Are a Brand Risk

AI hallucinations pose serious risks to businesses. An LLM might invent a fake discount code for your store, misquote your return policy, attribute a competitor's feature to your product, or cite an outdated price. These fabrications damage customer trust and can create legal liability. The root cause is usually missing or poorly structured data—when an AI can't find clear, authoritative information, it fills gaps with probabilistic guesses. The primary defense is structured data via JSON-LD and Knowledge Graphs. By explicitly declaring facts in machine-readable formats, you give AI models clear, verifiable information to cite instead of forcing them to hallucinate answers.

Factual AI Response vs. Hallucination

アスペクト
なし
AIと共に
Data Source
No structured data available
Clear JSON-LD schema present
AI Behavior
Fills gaps with invented "facts"
Cites verified structured data
Example Output
"Call support 24/7 at 1-800-FAKE" (invented)
"Support: 555-0199, Mon-Fri 9-5" (accurate)
事業への影響
Customer frustration, legal risk
Accurate information, builds trust

現実世界の影響

以前
現在のアプローチ
📋 シナリオ

User asks chatbot about discontinued product

⚙️ 起こること

AI hallucinates: "Product X available, $49.99"

📉
事業への影響

Customer orders, discovers truth, demands refund

その後
最適化された解
📋 シナリオ

Product schema includes "availability": "Discontinued"

⚙️ 起こること

AI correctly states: "Product X discontinued"

📈
事業への影響

Customer gets accurate info, explores alternatives

マスターの準備が整いました AI幻覚 ?

MultiLipiは、120+言語およびすべてのAIプラットフォームにわたる多言語GEO、ニューラル翻訳、ブランド保護のためのエンタープライズグレードツールを提供しています。