AI技術

ベクトル探索

Vector Search is an advanced information retrieval method that uses machine learning to transform text, images, or audio into numerical representations called "vectors." This allows AI to search based on semantic meaning and concepts (finding "canine" when searching for "dog") rather than exact keyword matches.

AI技術
Semantic Search
機械学習

The Future of "Understanding" Search

Traditional keyword search is binary: your page either contains "red dress" or it doesn't. Vector search is conceptual: a user searching for "outfit for gala" can find your "red evening gown" because the AI understands these concepts are semantically similar, even with zero overlapping words. Modern search bars (Amazon, Netflix, Shopify) increasingly use vector search. For businesses, this means optimizing for intent and concepts, not just keywords. Product descriptions should use rich, contextual language that helps AI models understand what the product is for, who it's for, and what problems it solves—this semantic richness creates better vector embeddings.

Keyword Search vs. Vector Search

アスペクト
なし
With Vector
Match Type
Exact words: "red dress"
Conceptual meaning: "elegant evening attire"
ユーザークエリ
User must know exact product names
User describes intent, AI finds match
Result Quality
Misses synonyms and related concepts
Finds semantically similar items
Search "laptop" → only sees word "laptop"
Search "laptop" → finds "notebook computer"

現実世界の影響

以前
現在のアプローチ
📋 シナリオ

User searches "cozy mystery books" on keyword-only site

⚙️ 起こること

No results (site uses "detective fiction" label)

📉
事業への影響

User leaves frustrated, zero sales

その後
最適化された解
📋 シナリオ

Same search on vector-enabled site

⚙️ 起こること

AI understands equivalence, shows detective fiction

📈
事業への影響

User finds perfect match, completes purchase

マスターの準備が整いました ベクトル探索 ?

MultiLipiは、120+言語およびすべてのAIプラットフォームにわたる多言語GEO、ニューラル翻訳、ブランド保護のためのエンタープライズグレードツールを提供しています。